Chapter 8 About CytoTree
Bug Reports
If there is any error in installing or librarying the CytoTree package, please contact us via e-mail forlynna@sjtu.edu.cn.
Current version
Version: 1.0.3
Release Date: 2020-11-01
Acknowledgment
This work was supported by the National Key Research and Development Plan of China Grants [No. 2018YFA0107802], the National Natural Science Foundation of China (NSFC) General Program [No. 81570122, 81670094, 81770205, 81830007], the National Key Research and Development Program [No. 2016YFC0902800], and the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support [No. 20161303], Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research [No. 2019CXJQ01], Mayo Clinic Center for Individualized Medicine.
We thank the Center for High Performance Computing of Shanghai Jiao Tong University for providing computing support.
We thank Prof. Guangchuang Yu at Southern Medical University for his kind comments and advice of CytoTree.
Session Information
# Show session information
sessionInfo()
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Catalina 10.15.7
##
## Matrix products: default
## BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] stringr_1.4.0 pheatmap_1.0.12 ggthemes_4.2.0 ggplot2_3.3.2 LSD_4.1-0 flowCore_2.2.0 CytoTree_1.0.3 igraph_1.2.6
##
## loaded via a namespace (and not attached):
## [1] reticulate_1.18 RUnit_0.4.32 tidyselect_1.1.0 RSQLite_2.2.1
## [5] AnnotationDbi_1.52.0 grid_4.0.2 ranger_0.12.1 BiocParallel_1.24.0
## [9] Rtsne_0.15 scatterpie_0.1.5 aws.signature_0.6.0 munsell_0.5.0
## [13] destiny_3.4.0 codetools_0.2-16 umap_0.2.7.0 withr_2.3.0
## [17] colorspace_1.4-1 Biobase_2.50.0 highr_0.8 knitr_1.30
## [21] rstudioapi_0.11 stats4_4.0.2 SingleCellExperiment_1.12.0 robustbase_0.93-6
## [25] vcd_1.4-8 VIM_6.0.0 TTR_0.24.2 labeling_0.4.2
## [29] MatrixGenerics_1.2.0 GenomeInfoDbData_1.2.4 polyclip_1.10-0 bit64_4.0.5
## [33] farver_2.0.3 flowWorkspace_4.2.0 vctrs_0.3.4 generics_0.1.0
## [37] xfun_0.19 R6_2.5.0 GenomeInfoDb_1.26.0 RcppEigen_0.3.3.7.0
## [41] locfit_1.5-9.4 bitops_1.0-6 DelayedArray_0.16.0 scales_1.1.1
## [45] nnet_7.3-14 gtable_0.3.0 sva_3.38.0 RProtoBufLib_2.2.0
## [49] rlang_0.4.8 genefilter_1.72.0 scatterplot3d_0.3-41 flowUtils_1.54.0
## [53] splines_4.0.2 hexbin_1.28.1 BiocManager_1.30.10 yaml_2.2.1
## [57] abind_1.4-5 RBGL_1.66.0 tools_4.0.2 bookdown_0.21
## [61] ellipsis_0.3.1 RColorBrewer_1.1-2 proxy_0.4-24 BiocGenerics_0.36.0
## [65] Rcpp_1.0.5 plyr_1.8.6 base64enc_0.1-3 zlibbioc_1.36.0
## [69] purrr_0.3.4 RCurl_1.98-1.2 FlowSOM_1.22.0 openssl_1.4.3
## [73] S4Vectors_0.28.0 zoo_1.8-8 SummarizedExperiment_1.20.0 haven_2.3.1
## [77] cluster_2.1.0 magrittr_1.5 ncdfFlow_2.36.0 data.table_1.13.2
## [81] RSpectra_0.16-0 openxlsx_4.2.3 gmodels_2.18.1 lmtest_0.9-38
## [85] RANN_2.6.1 pcaMethods_1.82.0 matrixStats_0.57.0 hms_0.5.3
## [89] evaluate_0.14 xtable_1.8-4 smoother_1.1 XML_3.99-0.5
## [93] rio_0.5.16 jpeg_0.1-8.1 mclust_5.4.6 readxl_1.3.1
## [97] IRanges_2.24.0 gridExtra_2.3 ggcyto_1.18.0 compiler_4.0.2
## [101] tibble_3.0.4 crayon_1.3.4 htmltools_0.5.0 mgcv_1.8-33
## [105] corpcor_1.6.9 tidyr_1.1.2 RcppParallel_5.0.2 aws.s3_0.3.21
## [109] DBI_1.1.0 tweenr_1.0.1 MASS_7.3-53 boot_1.3-25
## [113] Matrix_1.2-18 car_3.0-10 gdata_2.18.0 parallel_4.0.2
## [117] GenomicRanges_1.42.0 forcats_0.5.0 pkgconfig_2.0.3 rvcheck_0.1.8
## [121] prettydoc_0.4.0 foreign_0.8-80 laeken_0.5.1 sp_1.4-4
## [125] xml2_1.3.2 annotate_1.68.0 XVector_0.30.0 digest_0.6.27
## [129] tsne_0.1-3 ConsensusClusterPlus_1.54.0 graph_1.68.0 rmarkdown_2.5
## [133] cellranger_1.1.0 edgeR_3.32.0 curl_4.3 gtools_3.8.2
## [137] ggplot.multistats_1.0.0 lifecycle_0.2.0 nlme_3.1-150 jsonlite_1.7.1
## [141] carData_3.0-4 BiocNeighbors_1.8.0 askpass_1.1 limma_3.46.0
## [145] pillar_1.4.6 lattice_0.20-41 httr_1.4.2 DEoptimR_1.0-8
## [149] survival_3.2-7 glue_1.4.2 xts_0.12.1 zip_2.1.1
## [153] png_0.1-7 bit_4.0.4 Rgraphviz_2.34.0 ggforce_0.3.2
## [157] class_7.3-17 stringi_1.5.3 blob_1.2.1 RcppHNSW_0.3.0
## [161] CytoML_2.2.1 latticeExtra_0.6-29 memoise_1.1.0 dplyr_1.0.2
## [165] cytolib_2.2.0 knn.covertree_1.0 irlba_2.3.3 e1071_1.7-4
Reference
- Hahne F, Arlt D, Sauermann M, Majety M, Poustka A, Wiemann S, Huber W: Statistical methods and software for the analysis of highthroughput reverse genetic assays using flow cytometry readouts. Genome Biol 2006, 7:R77.
- Olsen LR, Leipold MD, Pedersen CB, Maecker HT: The anatomy of single cell mass cytometry data. Cytometry A 2019, 95:156-172.
- Butler A, Hoffman P, Smibert P, Papalexi E, Satija R: Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018, 36:411-420.
- Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014, 32:381-386.
- Kiselev VY, Yiu A, Hemberg M: scmap: projection of single-cell RNA-seq data across data sets. Nat Methods 2018, 15:359-362.
- Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe’er D: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 2013, 31:545-552.
- Haghverdi L, Buettner F, Theis FJ: Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 2015, 31:2989-2998.
- Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F, Newell EW: Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 2018.
- Wang L, Hoffman RA: Standardization, Calibration, and Control in Flow Cytometry. Curr Protoc Cytom 2017, 79:1 3 1-1 3 27.
- Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D, Spidlen J, Strain E, Gentleman R: flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 2009, 10:106.
- Sarkar D, Le Meur N, Gentleman R: Using flowViz to visualize flow cytometry data. Bioinformatics 2008, 24:878-879.
- Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, Saeys Y: FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 2015, 87:636-645.
- Qiu P, Simonds EF, Bendall SC, Gibbs KD, Jr., Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 2011, 29:886-891.
- Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J: Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline. PLoS Comput Biol 2016, 12:e1005112.
- Chattopadhyay PK, Winters AF, Lomas WE, 3rd, Laino AS, Woods DM: High-Parameter Single-Cell Analysis. Annu Rev Anal Chem (Palo Alto Calif) 2019, 12:411-430.
- Bendall SC, Davis KL, Amir el AD, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK, Nolan GP, Pe’er D: Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014, 157:714-725.
- Nowicka M, Krieg C, Crowell HL, Weber LM, Hartmann FJ, Guglietta S, Becher B, Levesque MP, Robinson MD: CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Res 2017, 6:748.
- Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, et al: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011, 332:687-696.
- Herring CA, Banerjee A, McKinley ET, Simmons AJ, Ping J, Roland JT, Franklin JL, Liu Q, Gerdes MJ, Coffey RJ, Lau KS: Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. Cell Syst 2018, 6:37-51 e39.
- Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR: FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry A 2012, 81:727-731.
- Doulatov S, Notta F, Laurenti E, Dick JE: Hematopoiesis: a human perspective. Cell Stem Cell 2012, 10:120-136.
- Laurenti E, Gottgens B: From haematopoietic stem cells to complex differentiation landscapes. Nature 2018, 553:418-426.
- Wang C, Tang X, Sun X, Miao Z, Lv Y, Yang Y, Zhang H, Zhang P, Liu Y, Du L, et al: TGFbeta inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy. Cell Res 2012, 22:194-207.
- Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE: Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 2011, 333:218-221.
- Hu Z, Jujjavarapu C, Hughey JJ, Andorf S, Lee HC, Gherardini PF, Spitzer MH, Thomas CG, Campbell J, Dunn P, et al: MetaCyto: A Tool for Automated Meta-analysis of Mass and Flow Cytometry Data. Cell Rep 2018, 24:1377-1388.
- Finak G, Frelinger J, Jiang W, Newell EW, Ramey J, Davis MM, Kalams SA, De Rosa SC, Gottardo R: OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol 2014, 10:e1003806.
- Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR: Rapid cell population identification in flow cytometry data. Cytometry A 2011, 79:6-13.
- Schubert E, Rousseeuw PJ: Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms. 2018.
- Scrucca L, Fop M, Murphy TB, Raftery AE: mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. R j 2016, 8:289-317.
- Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD: The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012, 28:882-883.
- Saelens W, Cannoodt R, Todorov H, Saeys Y: A comparison of single-cell trajectory inference methods. Nat Biotechnol 2019.
- Kotecha N, Krutzik PO, Irish JM: Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom 2010, Chapter 10:Unit10 17.
- Finak G, Jiang M: FlowWorkspace: Infrastructure for Representing and Interacting with the Gated Cytometry. 2011.
- Van P, Jiang W, Gottardo R, Finak G: ggCyto: next generation open-source visualization software for cytometry. Bioinformatics 2018, 34:3951-3953.
- Ito K, Murphy D: Application of ggplot2 to Pharmacometric Graphics. CPT Pharmacometrics Syst Pharmacol 2013, 2:e79.
- Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015, 43:e47.
- Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, et al: The single-cell transcriptional landscape of mammalian organogenesis. Nature 2019, 566:496-502.
- Wang X: A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality. Proc Int Jt Conf Neural Netw 2012, 43:2351-2358.